Юность? Вздымающаяся волна. Позади — ветер, впереди — скалы. Уильям Вордсворт
Нас стало больше!
Мы в Контакте Мы на Facebook
Мы в Twitter Мы на LinkedIn
Приветствуем
  • smelnychuk
  • Категории
    Статьи [13]
    Ошибка?
    Система Orphus
    Поиск
    КАЛЕНДАРЬ
    Радио онлайн
    Друзья
  • The Wavelet Digest
  • Технологии анализа данных
  • Математический сайт
  • Вся биология
  • Архив записей
    Магнитные бури
    Пpoгнoз мaгнитныx буpь
    Онлайн

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Главная » Статьи » Статьи

    Penalized wavelets: Embedding wavelets into semiparametric regression

     M.P. Wand and J.T. Ormerod

    Penalized wavelets: Embedding wavelets into semiparametric regression

    M.P. Wand and J.T. Ormerod

    Source: Electron. J. Statist. Volume 5 (2011), 1654-1717.

    Abstract

    We introduce the concept of penalized wavelets to facilitate seamless embedding of wavelets into semiparametric regression models. In particular, we show that penalized wavelets are analogous to penalized splines; the latter being the established approach to function estimation in semiparametric regression. They differ only in the type of penalization that is appropriate. This fact is not borne out by the existing wavelet literature, where the regression modelling and fitting issues are overshadowed by computational issues such as efficiency gains afforded by the Discrete Wavelet Transform and partially obscured by a tendency to work in the wavelet coefficient space. With penalized wavelet structure in place, we then show that fitting and inference can be achieved via the same general approaches used for penalized splines: penalized least squares, maximum likelihood and best prediction within a frequentist mixed model framework, and Markov chain Monte Carlo and mean field variational Bayes within a Bayesian framework. Penalized wavelets are also shown have a close relationship with wide data ("p≫n”) regression and benefit from ongoing research on that topic.

    Cтатью читайте в библиотеке.


    References
    [1] Albert, J.H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data., Journal of the American Statistical Association, 88, 669–679.
    Mathematical Reviews (MathSciNet): MR1224394
    Zentralblatt MATH: 0774.62031
    Digital Object Identifier: doi:10.2307/2290350
    [2] Antoniadis, A., Bigot, J. and Gijbels, I. (2007). Penalized wavelet monotone regression., Statistics and Probability Letters, 77, 1608–1621.
    Mathematical Reviews (MathSciNet): MR2393599
    [3] Antoniadis, A. and Fan, J. (2001). Regularization of wavelet approximations (with discussion)., Journal of the American Statistical Association, 96, 939–967.
    Mathematical Reviews (MathSciNet): MR1946364
    Zentralblatt MATH: 1072.62561
    Digital Object Identifier: doi:10.1198/016214501753208942
    [4] Antoniadis, A. and Leblanc, F. (2000). Nonparametric wavelet regression for binary response., Statistics, 34, 183–213.
    Mathematical Reviews (MathSciNet): MR1802727
    Digital Object Identifier: doi:10.1080/02331880008802713
    [5] Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes., Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 21–30.
    [6] Aykroyd, R.G. and Mardia, K.V. (2003). A wavelet approach to shape analysis for spinal curves., Journal of Applied Statistics, 30, 605–623.
    Mathematical Reviews (MathSciNet): MR1986349
    Zentralblatt MATH: 1121.62321
    Digital Object Identifier: doi:10.1080/0266476032000053718
    [7] Berry, S.M., Carroll, R.J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems., Journal of the American Statistical Association, 97, 160–169.
    Mathematical Reviews (MathSciNet): MR1947277
    Zentralblatt MATH: 1073.62524
    Digital Object Identifier: doi:10.1198/016214502753479301
    [8] Bishop, C.M. (2006)., Pattern Recognition and Machine Learning. New York: Springer.
    Mathematical Reviews (MathSciNet): MR2247587
    Zentralblatt MATH: 1107.68072
    [9] Breheny, P. (2011). ncvreg 2.3. Regularization paths for SCAD- and MCP-penalized regression models. R package., http://cran.r-project.org
    [10] Brumback, B.A. and Rice, J.A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion)., Journal of the American Statistical Association, 93, 961–994.
    Mathematical Reviews (MathSciNet): MR1649194
    Zentralblatt MATH: 1064.62515
    Digital Object Identifier: doi:10.2307/2669837
    [11] Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models., The Annals of Statistics, 17, 453–510.
    Mathematical Reviews (MathSciNet): MR994249
    Zentralblatt MATH: 0689.62029
    Digital Object Identifier: doi:10.1214/aos/1176347115
    Project Euclid: euclid.aos/1176347115
    [12] Carvalho, C.M., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for sparse signals., Biometrika, 97, 465–480.
    Mathematical Reviews (MathSciNet): MR2650751
    Zentralblatt MATH: 05773446
    Digital Object Identifier: doi:10.1093/biomet/asq017
    [13] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation., Numerische Mathematik, 31, 377–403.
    Mathematical Reviews (MathSciNet): MR516581
    Zentralblatt MATH: 0377.65007
    Digital Object Identifier: doi:10.1007/BF01404567
    [14] Currie, I.D. and Durbán, M. (2002). Flexible smoothing with P-splines: a unified approach., Statistical Modelling, 4, 333–349.
    Mathematical Reviews (MathSciNet): MR1951589
    Digital Object Identifier: doi:10.1191/1471082x02st039ob
    [15] Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets., Communications on Pure and Applied Mathematics, 41, 909–996.
    Mathematical Reviews (MathSciNet): MR951745
    Zentralblatt MATH: 0644.42026
    Digital Object Identifier: doi:10.1002/cpa.3160410705
    [16] Donoho, D.L. (1995). De-noising by soft-thresholding., IEEE Transactions on Information Theory, 41, 613–627.
    Mathematical Reviews (MathSciNet): MR1331258
    Digital Object Identifier: doi:10.1109/18.382009
    [17] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation by wavelet shrinkage., Biometrika, 81, 425–456.
    Mathematical Reviews (MathSciNet): MR1311089
    Zentralblatt MATH: 0815.62019
    Digital Object Identifier: doi:10.1093/biomet/81.3.425
    [18] Durbán, M., Harezlak, J., Wand, M.P. and Carroll, R.J. (2005). Simple fitting of subject-specific curves for longitudinal data., Statistics in Medicine, 24, 1153–1167.
    Mathematical Reviews (MathSciNet): MR2134571
    Digital Object Identifier: doi:10.1002/sim.1991
    [19] Efron, B. (2004). The estimation of prediction error: covariance penalties and cross-validation (with discussion)., Journal of the American Statistical Association, 99, 619–642.
    Mathematical Reviews (MathSciNet): MR2090899
    Zentralblatt MATH: 1117.62324
    Digital Object Identifier: doi:10.1198/016214504000000692
    [20] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression., The Annals of Statistics, 32, 407–451.
    Mathematical Reviews (MathSciNet): MR2060166
    Zentralblatt MATH: 1091.62054
    Digital Object Identifier: doi:10.1214/009053604000000067
    Project Euclid: euclid.aos/1083178935
    [21] Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties (with discussion)., Statistical Science, 11, 89–121.
    Mathematical Reviews (MathSciNet): MR1435485
    Digital Object Identifier: doi:10.1214/ss/1038425655
    Project Euclid: euclid.ss/1038425655
    [22] Faes, C., Ormerod, J.T. and Wand, M.P. (2011). Variational Bayesian inference for parametric and nonparametric regression with missing data., Journal of the American Statistical Association, 106, 959–971.
    [23] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American Statistical Association, 96, 1348–1360.
    Mathematical Reviews (MathSciNet): MR1946581
    Zentralblatt MATH: 1073.62547
    Digital Object Identifier: doi:10.1198/016214501753382273
    [24] Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models with NP-dimensionality., The Annals of Statistics, 38, 3567–3604.
    Mathematical Reviews (MathSciNet): MR2766861
    Zentralblatt MATH: 1206.68157
    Digital Object Identifier: doi:10.1214/10-AOS798
    Project Euclid: euclid.aos/1291126966
    [25] Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (Eds.) (2008)., Longitudinal Data Analysis: A Handbook of Modern Statistical Methods. Boca Raton, Florida: Chapman & Hall/CRC.
    [26] Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools., Technometrics, 35, 109–135.
    [27] Friedman, J., Hastie, T. and Tibshirani, R. (2009). glmnet 1.1: lasso and elastic-net regularized generalized linear models. R package., http://cran.r-project.org
    [28] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent., Journal of Statistical Software, Volume 33, Issue 1, 1–22.
    [29] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models., Bayesian Analysis, 1, 515–533.
    Mathematical Reviews (MathSciNet): MR2221284
    Digital Object Identifier: doi:10.1214/06-BA117A
    [30] Gradshteyn, I.S. and Ryzhik, I.M. (1994)., Tables of Integrals, Series, and Products, 5th Edition. San Diego, California: Academic Press.
    [31] Green, P.J. and Silverman, B.W. (1994)., Nonparametric Regression and Generalized Linear Models. London: Chapman and Hall.
    Mathematical Reviews (MathSciNet): MR1270012
    Zentralblatt MATH: 0832.62032
    [32] Griffin, J.E. and Brown, P.J. (2011). Bayesian hyper lassos with non-convex penalization., Australian and New Zealand Journal of Statistics, to appear.
    [33] Hart, J.P., McCurdy, M.R., Ezhil, M., Wei W., Khan, M., Luo, D., Munden, R.F., Johnson, V.E. and Guerrero, T.M. (2008). Radiation pneumonitis: correlation and toxicity with pulmonary metabolic radiation response., International Journal of Radiation Oncology, Biology, Physics, 4, 967–971.
    [34] Hastie, T. (1996). Pseudosplines., Journal of the Royal Statistical Society, Series B, 58, 379–396.
    Mathematical Reviews (MathSciNet): MR1377839
    [35] Hastie, T. and Efron, B. (2007). lars 0.9. Least angle regression, lasso and forward stagewise regression. R package., http://cran.r-project.org
    [36] Hastie, T.J. and Tibshirani, R.J. (1990)., Generalized Additive Models. London: Chapman and Hall.
    Mathematical Reviews (MathSciNet): MR1082147
    [37] Hastie, T., Tibshirani, R. and Friedman, J. (2009)., The Elements of Statistical Learning, Second Edition. New York: Springer.
    Mathematical Reviews (MathSciNet): MR2722294
    [38] Hurvich, C. M., Simonoff, J. S. and Tsai, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion., Journal of the Royal Statistical Society, Series B, 60, 271–293.
    Mathematical Reviews (MathSciNet): MR1616041
    Zentralblatt MATH: 0909.62039
    Digital Object Identifier: doi:10.1111/1467-9868.00125
    [39] Johnstone, I.M. and Silverman, B.W. (2005). Empirical Bayes selection of wavelet thresholds., The Annals of Statistics, 33, 1700–1752.
    Mathematical Reviews (MathSciNet): MR2166560
    Zentralblatt MATH: 1078.62005
    Digital Object Identifier: doi:10.1214/009053605000000345
    Project Euclid: euclid.aos/1123250227
    [40] Kerkyacharian, G. and Picard, D. (1992). Density estimation in Besov spaces., Statistics and Probability Letters, 13, 15–24.
    Mathematical Reviews (MathSciNet): MR1147634
    [41] Ligges, U., Thomas, A., Spiegelhalter, D., Best, N. Lunn, D., Rice, K. and Sturtz, S. (2009). BRugs 0.5: OpenBUGS and its R/S-PLUS interface BRugs., http://www.stats.ox.ac.uk/pub/RWin/src/contrib/
    [42] Marley, J.K. and Wand, M.P. (2010). Non-standard semiparametric regression via BRugs., Journal of Statistical Software, Volume 37, Issue 5, 1–30.
    [43] Marron, J.S., Adak, S., Johnstone, I.M., Neumann, M.H. and Patil, P. (1998). Exact risk analysis of wavelet regression., Journal of Computational and Graphical Statistics, 7, 278–309.
    [44] Minka, T., Winn, J., Guiver, G. and Knowles, D. (2009). Infer.Net 2.4. Microsoft Research Cambridge, Cambridge, UK., http://research/microsoft.com/infernet
    [45] Morris, J.S. and Carroll, R.J. (2006). Wavelet-based functional mixed models., Journal of the Royal Statistical Society, Series B, 68, 179–199.
    Mathematical Reviews (MathSciNet): MR2188981
    Zentralblatt MATH: 1110.62053
    Digital Object Identifier: doi:10.1111/j.1467-9868.2006.00539.x
    [46] Morris, J.S., Vannucci, M., Brown, P.J. and Carroll, R.J. (2003). Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis., Journal of the American Statistical Association, 98, 573–597.
    Mathematical Reviews (MathSciNet): MR2011673
    Zentralblatt MATH: 1040.62104
    Digital Object Identifier: doi:10.1198/016214503000000422
    [47] Nason, G.P. (2008)., Wavelet Methods in Statistics with R. New York: Springer.
    Mathematical Reviews (MathSciNet): MR2445580
    Zentralblatt MATH: 1165.62033
    [48] Nason, G.P. (2010). wavethresh 4.5. Wavelets statistics and transforms. R package., http://cran.r-project.org
    [49] Ormerod, J.T. and Wand, M.P. (2010). Explaining variational approximations., The American Statistician, 64, 140–153.
    Mathematical Reviews (MathSciNet): MR2757005
    Zentralblatt MATH: 1200.65007
    Digital Object Identifier: doi:10.1198/tast.2010.09058
    [50] Osborne, M.R., Presnell, B. and Turlach, B.A. (2000). On the LASSO and its dual., Journal of Computational and Graphical Statistics, 9, 319–337.
    Mathematical Reviews (MathSciNet): MR1822089
    Digital Object Identifier: doi:10.2307/1390657
    [51] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems (with discussion)., Statistical Science, 1, 505–527.
    Mathematical Reviews (MathSciNet): MR874480
    Digital Object Identifier: doi:10.1214/ss/1177013525
    Project Euclid: euclid.ss/1177013525
    [52] Pearl, J. (1988)., Probabilistic Reasoning in Intelligent Systems. San Mateo, California: Morgan Kaufmann.
    Mathematical Reviews (MathSciNet): MR965765
    Zentralblatt MATH: 0746.68089
    [53] Pericchi, L.R. and Smith, A.F.M. (1992). Exact and approximate posterior moments for a normal location parameter., Journal of the Royal Statistical Society, Series B, 54, 793–804.
    Mathematical Reviews (MathSciNet): MR1185223
    [54] R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org
    [55] Robert, C.P. and Casella, G. (2004)., Monte Carlo Statistical Methods, 2nd ed. New York: Springer.
    Mathematical Reviews (MathSciNet): MR2080278
    [56] Ruppert, D., Wand, M.P. and Carroll, R.J. (2003)., Semiparametric Regression. New York: Cambridge University Press.
    Mathematical Reviews (MathSciNet): MR1998720
    [57] Ruppert, D., Wand, M.P. and Carroll, R.J. (2009). Semiparametric regression during 2003-2007., Electronic Journal of Statistics, 3, 1193–1256.
    Mathematical Reviews (MathSciNet): MR2566186
    Digital Object Identifier: doi:10.1214/09-EJS525
    Project Euclid: euclid.ejs/1259944245
    [58] Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R. and Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. Medical Research Council Biostatistics Unit, Cambridge, UK., http://www.mrc-bsu.cam.ac.uk/bugs.
    [59] Staudenmayer, J., Lake, E.E. and Wand, M.P. (2009). Robustness for general design mixed models using the, t-distribution. Statistical Modelling, 9, 235–255.
    Mathematical Reviews (MathSciNet): MR2756419
    Digital Object Identifier: doi:10.1177/1471082X0800900304
    [60] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution., The Annals of Statistics, 9, 1135–1151.
    Mathematical Reviews (MathSciNet): MR630098
    Zentralblatt MATH: 0476.62035
    Digital Object Identifier: doi:10.1214/aos/1176345632
    Project Euclid: euclid.aos/1176345632
    [61] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso., Journal of the Royal Statistical Society, Series B, 58, 267–288.
    Mathematical Reviews (MathSciNet): MR1379242
    [62] Vidakovic, B. (1999)., Statistical Modeling by Wavelets. New York: Wiley.
    Mathematical Reviews (MathSciNet): MR1681904
    Zentralblatt MATH: 0924.62032
    [63] Wahba, G. (1990)., Spline Models for Observational Data, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics.
    Mathematical Reviews (MathSciNet): MR1045442
    Zentralblatt MATH: 0813.62001
    [64] Wainwright, M.J. and Jordan, M.I. (2008). Graphical models, exponential families, and variational inference., Foundation and Trends in Machine Learning, 1, 1–305.
    [65] Wand, M.P. (2009). Semiparametric regression and graphical models., Australian and New Zealand Journal of Statistics, 51, 9–41.
    Mathematical Reviews (MathSciNet): MR2504101
    [66] Wand, M.P. and Ormerod, J.T. (2008). On semiparametric regression with O’Sullivan penalized splines., Australian and New Zealand Journal of Statistics, 50, 179–198.
    Mathematical Reviews (MathSciNet): MR2431193
    [67] Wand, M.P., Ormerod, J.T., Padoan, S.A. and Frühwirth, R. (2011). Mean field variational Bayes for elaborate distributions., Bayesian Analysis, to appear.
    [68] Wang, Y. (1998). Mixed effects smoothing spline analysis of variance., Journal of the Royal Statistical Society, Series B, 60, 159–174.
    Mathematical Reviews (MathSciNet): MR1625640
    Zentralblatt MATH: 0909.62034
    Digital Object Identifier: doi:10.1111/1467-9868.00115
    [69] Wang, S.S.J. and Wand, M.P. (2011). Using Infer.NET for statistical analyses., The American Statistician, 65, 115–126.
    [70] Welham, S.J., Cullis, B.R., Kenward, M.G. and Thompson, R. (2007). A comparison of mixed model splines for curve fitting., Australian and New Zealand Journal of Statistics, 49, 1–23.
    Mathematical Reviews (MathSciNet): MR2345406
    [71] Wood, S.N. (2003). Thin-plate regression splines., Journal of the Royal Statistical Society, Series B, 65, 95–114.
    Mathematical Reviews (MathSciNet): MR1959095
    Zentralblatt MATH: 1063.62059
    Digital Object Identifier: doi:10.1111/1467-9868.00374
    [72] Wood, S.N. (2006)., Generalized Additive Models: An Introduction with R. Boca Raton, Florida: Chapman & Hall/CRC.
    Mathematical Reviews (MathSciNet): MR2206355
    [73] Wood, S.N. (2011). mgcv 1.7. GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. R package., http://cran.r-project.org
    Mathematical Reviews (MathSciNet): MR2797734
    Digital Object Identifier: doi:10.1111/j.1467-9868.2010.00749.x
    [74] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty., The Annals of Statistics, 38, 894–942.
    Mathematical Reviews (MathSciNet): MR2604701
    Zentralblatt MATH: 1183.62120
    Digital Object Identifier: doi:10.1214/09-AOS729
    Project Euclid: euclid.aos/1266586618
    [75] Zhang, D., Lin, X., Raz, J. and Sowers, M. (1998). Semi-parametric stochastic mixed models for longitudinal data., Journal of the American Statistical Association, 93, 710–719
    Mathematical Reviews (MathSciNet): MR1631369
    Zentralblatt MATH: 0918.62039
    Digital Object Identifier: doi:10.2307/2670121
    [76] Zhao, W. and Wu, R. (2008). Wavelet-based nonparametric functional mapping of longitudinal curves., Journal of the American Statistical Association, 103, 714–725.
    Mathematical Reviews (MathSciNet): MR2524004
    Zentralblatt MATH: 05564525
    Digital Object Identifier: doi:10.1198/016214508000000373
    [77] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net., Journal of the Royal Statistical Society, Series B, 67, 301–320.
    Mathematical Reviews (MathSciNet): MR2137327
    Zentralblatt MATH: 1069.62054
    Digital Object Identifier: doi:10.1111/j.1467-9868.2005.00503.x
    [78] Zou, H., Hastie, T. and Tibshirani, R. (2007). On the "degrees of freedom” of the lasso., The Annals of Statistics, 5, 2173–2192.
    Mathematical Reviews (MathSciNet): MR2363967
    Digital Object Identifier: doi:10.1214/009053607000000127
     Project Euclid: euclid.aos/1194461726



    Источник: http://projecteuclid.org/
    Категория: Статьи | Добавил: Mby-Sci (26.04.2012)
    Просмотров: 948 | Теги: generalized additive models, maximum likelihood estimation, Bayesian inference, Markov chain Monte Carlo, mean field, best prediction, Gibbs sampling
    Всего комментариев: 0
    Добавлять комментарии могут только зарегистрированные пользователи.
    [ Регистрация | Вход ]
    Бесплатный каталог сайтов "Мир сайтов", добавить сайт, увеличить ТИЦ, PR Занесено в каталог Deport.ru