M.P. Wand and J.T. Ormerod Penalized wavelets: Embedding wavelets into semiparametric regression
M.P. Wand and J.T. Ormerod
Source: Electron. J. Statist. Volume 5 (2011), 1654-1717. Abstract
We introduce the concept of penalized wavelets to facilitate seamless embedding of wavelets into semiparametric regression models. In particular, we show that penalized wavelets are analogous to penalized splines; the latter being the established approach to function estimation in semiparametric regression. They differ only in the type of penalization that is appropriate. This fact is not borne out by the existing wavelet literature, where the regression modelling and fitting issues are overshadowed by computational issues such as efficiency gains afforded by the Discrete Wavelet Transform and partially obscured by a tendency to work in the wavelet coefficient space. With penalized wavelet structure in place, we then show that fitting and inference can be achieved via the same general approaches used for penalized splines: penalized least squares, maximum likelihood and best prediction within a frequentist mixed model framework, and Markov chain Monte Carlo and mean field variational Bayes within a Bayesian framework. Penalized wavelets are also shown have a close relationship with wide data ("p≫n”) regression and benefit from ongoing research on that topic. Cтатью читайте в библиотеке.
References [1] Albert, J.H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data., Journal of the American Statistical Association, 88, 669–679. Mathematical Reviews (MathSciNet): MR1224394 Zentralblatt MATH: 0774.62031 Digital Object Identifier: doi:10.2307/2290350 [2] Antoniadis, A., Bigot, J. and Gijbels, I. (2007). Penalized wavelet monotone regression., Statistics and Probability Letters, 77, 1608–1621. Mathematical Reviews (MathSciNet): MR2393599 [3] Antoniadis, A. and Fan, J. (2001). Regularization of wavelet approximations (with discussion)., Journal of the American Statistical Association, 96, 939–967. Mathematical Reviews (MathSciNet): MR1946364 Zentralblatt MATH: 1072.62561 Digital Object Identifier: doi:10.1198/016214501753208942 [4] Antoniadis, A. and Leblanc, F. (2000). Nonparametric wavelet regression for binary response., Statistics, 34, 183–213. Mathematical Reviews (MathSciNet): MR1802727 Digital Object Identifier: doi:10.1080/02331880008802713 [5] Attias, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes., Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 21–30. [6] Aykroyd, R.G. and Mardia, K.V. (2003). A wavelet approach to shape analysis for spinal curves., Journal of Applied Statistics, 30, 605–623. Mathematical Reviews (MathSciNet): MR1986349 Zentralblatt MATH: 1121.62321 Digital Object Identifier: doi:10.1080/0266476032000053718 [7] Berry, S.M., Carroll, R.J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems., Journal of the American Statistical Association, 97, 160–169. Mathematical Reviews (MathSciNet): MR1947277 Zentralblatt MATH: 1073.62524 Digital Object Identifier: doi:10.1198/016214502753479301 [8] Bishop, C.M. (2006)., Pattern Recognition and Machine Learning. New York: Springer. Mathematical Reviews (MathSciNet): MR2247587 Zentralblatt MATH: 1107.68072 [9] Breheny, P. (2011). ncvreg 2.3. Regularization paths for SCAD- and MCP-penalized regression models. R package., http://cran.r-project.org [10] Brumback, B.A. and Rice, J.A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves (with discussion)., Journal of the American Statistical Association, 93, 961–994. Mathematical Reviews (MathSciNet): MR1649194 Zentralblatt MATH: 1064.62515 Digital Object Identifier: doi:10.2307/2669837 [11] Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models., The Annals of Statistics, 17, 453–510. Mathematical Reviews (MathSciNet): MR994249 Zentralblatt MATH: 0689.62029 Digital Object Identifier: doi:10.1214/aos/1176347115 Project Euclid: euclid.aos/1176347115 [12] Carvalho, C.M., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for sparse signals., Biometrika, 97, 465–480. Mathematical Reviews (MathSciNet): MR2650751 Zentralblatt MATH: 05773446 Digital Object Identifier: doi:10.1093/biomet/asq017 [13] Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation., Numerische Mathematik, 31, 377–403. Mathematical Reviews (MathSciNet): MR516581 Zentralblatt MATH: 0377.65007 Digital Object Identifier: doi:10.1007/BF01404567 [14] Currie, I.D. and Durbán, M. (2002). Flexible smoothing with P-splines: a unified approach., Statistical Modelling, 4, 333–349. Mathematical Reviews (MathSciNet): MR1951589 Digital Object Identifier: doi:10.1191/1471082x02st039ob [15] Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets., Communications on Pure and Applied Mathematics, 41, 909–996. Mathematical Reviews (MathSciNet): MR951745 Zentralblatt MATH: 0644.42026 Digital Object Identifier: doi:10.1002/cpa.3160410705 [16] Donoho, D.L. (1995). De-noising by soft-thresholding., IEEE Transactions on Information Theory, 41, 613–627. Mathematical Reviews (MathSciNet): MR1331258 Digital Object Identifier: doi:10.1109/18.382009 [17] Donoho, D.L. and Johnstone, I.M. (1994). Ideal spatial adaptation by wavelet shrinkage., Biometrika, 81, 425–456. Mathematical Reviews (MathSciNet): MR1311089 Zentralblatt MATH: 0815.62019 Digital Object Identifier: doi:10.1093/biomet/81.3.425 [18] Durbán, M., Harezlak, J., Wand, M.P. and Carroll, R.J. (2005). Simple fitting of subject-specific curves for longitudinal data., Statistics in Medicine, 24, 1153–1167. Mathematical Reviews (MathSciNet): MR2134571 Digital Object Identifier: doi:10.1002/sim.1991 [19] Efron, B. (2004). The estimation of prediction error: covariance penalties and cross-validation (with discussion)., Journal of the American Statistical Association, 99, 619–642. Mathematical Reviews (MathSciNet): MR2090899 Zentralblatt MATH: 1117.62324 Digital Object Identifier: doi:10.1198/016214504000000692 [20] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression., The Annals of Statistics, 32, 407–451. Mathematical Reviews (MathSciNet): MR2060166 Zentralblatt MATH: 1091.62054 Digital Object Identifier: doi:10.1214/009053604000000067 Project Euclid: euclid.aos/1083178935 [21] Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties (with discussion)., Statistical Science, 11, 89–121. Mathematical Reviews (MathSciNet): MR1435485 Digital Object Identifier: doi:10.1214/ss/1038425655 Project Euclid: euclid.ss/1038425655 [22] Faes, C., Ormerod, J.T. and Wand, M.P. (2011). Variational Bayesian inference for parametric and nonparametric regression with missing data., Journal of the American Statistical Association, 106, 959–971. [23] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American Statistical Association, 96, 1348–1360. Mathematical Reviews (MathSciNet): MR1946581 Zentralblatt MATH: 1073.62547 Digital Object Identifier: doi:10.1198/016214501753382273 [24] Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models with NP-dimensionality., The Annals of Statistics, 38, 3567–3604. Mathematical Reviews (MathSciNet): MR2766861 Zentralblatt MATH: 1206.68157 Digital Object Identifier: doi:10.1214/10-AOS798 Project Euclid: euclid.aos/1291126966 [25] Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (Eds.) (2008)., Longitudinal Data Analysis: A Handbook of Modern Statistical Methods. Boca Raton, Florida: Chapman & Hall/CRC. [26] Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools., Technometrics, 35, 109–135. [27] Friedman, J., Hastie, T. and Tibshirani, R. (2009). glmnet 1.1: lasso and elastic-net regularized generalized linear models. R package., http://cran.r-project.org [28] Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent., Journal of Statistical Software, Volume 33, Issue 1, 1–22. [29] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models., Bayesian Analysis, 1, 515–533. Mathematical Reviews (MathSciNet): MR2221284 Digital Object Identifier: doi:10.1214/06-BA117A [30] Gradshteyn, I.S. and Ryzhik, I.M. (1994)., Tables of Integrals, Series, and Products, 5th Edition. San Diego, California: Academic Press. [31] Green, P.J. and Silverman, B.W. (1994)., Nonparametric Regression and Generalized Linear Models. London: Chapman and Hall. Mathematical Reviews (MathSciNet): MR1270012 Zentralblatt MATH: 0832.62032 [32] Griffin, J.E. and Brown, P.J. (2011). Bayesian hyper lassos with non-convex penalization., Australian and New Zealand Journal of Statistics, to appear. [33] Hart, J.P., McCurdy, M.R., Ezhil, M., Wei W., Khan, M., Luo, D., Munden, R.F., Johnson, V.E. and Guerrero, T.M. (2008). Radiation pneumonitis: correlation and toxicity with pulmonary metabolic radiation response., International Journal of Radiation Oncology, Biology, Physics, 4, 967–971. [34] Hastie, T. (1996). Pseudosplines., Journal of the Royal Statistical Society, Series B, 58, 379–396. Mathematical Reviews (MathSciNet): MR1377839 [35] Hastie, T. and Efron, B. (2007). lars 0.9. Least angle regression, lasso and forward stagewise regression. R package., http://cran.r-project.org [36] Hastie, T.J. and Tibshirani, R.J. (1990)., Generalized Additive Models. London: Chapman and Hall. Mathematical Reviews (MathSciNet): MR1082147 [37] Hastie, T., Tibshirani, R. and Friedman, J. (2009)., The Elements of Statistical Learning, Second Edition. New York: Springer. Mathematical Reviews (MathSciNet): MR2722294 [38] Hurvich, C. M., Simonoff, J. S. and Tsai, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion., Journal of the Royal Statistical Society, Series B, 60, 271–293. Mathematical Reviews (MathSciNet): MR1616041 Zentralblatt MATH: 0909.62039 Digital Object Identifier: doi:10.1111/1467-9868.00125 [39] Johnstone, I.M. and Silverman, B.W. (2005). Empirical Bayes selection of wavelet thresholds., The Annals of Statistics, 33, 1700–1752. Mathematical Reviews (MathSciNet): MR2166560 Zentralblatt MATH: 1078.62005 Digital Object Identifier: doi:10.1214/009053605000000345 Project Euclid: euclid.aos/1123250227 [40] Kerkyacharian, G. and Picard, D. (1992). Density estimation in Besov spaces., Statistics and Probability Letters, 13, 15–24. Mathematical Reviews (MathSciNet): MR1147634 [41] Ligges, U., Thomas, A., Spiegelhalter, D., Best, N. Lunn, D., Rice, K. and Sturtz, S. (2009). BRugs 0.5: OpenBUGS and its R/S-PLUS interface BRugs., http://www.stats.ox.ac.uk/pub/RWin/src/contrib/ [42] Marley, J.K. and Wand, M.P. (2010). Non-standard semiparametric regression via BRugs., Journal of Statistical Software, Volume 37, Issue 5, 1–30. [43] Marron, J.S., Adak, S., Johnstone, I.M., Neumann, M.H. and Patil, P. (1998). Exact risk analysis of wavelet regression., Journal of Computational and Graphical Statistics, 7, 278–309. [44] Minka, T., Winn, J., Guiver, G. and Knowles, D. (2009). Infer.Net 2.4. Microsoft Research Cambridge, Cambridge, UK., http://research/microsoft.com/infernet [45] Morris, J.S. and Carroll, R.J. (2006). Wavelet-based functional mixed models., Journal of the Royal Statistical Society, Series B, 68, 179–199. Mathematical Reviews (MathSciNet): MR2188981 Zentralblatt MATH: 1110.62053 Digital Object Identifier: doi:10.1111/j.1467-9868.2006.00539.x [46] Morris, J.S., Vannucci, M., Brown, P.J. and Carroll, R.J. (2003). Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis., Journal of the American Statistical Association, 98, 573–597. Mathematical Reviews (MathSciNet): MR2011673 Zentralblatt MATH: 1040.62104 Digital Object Identifier: doi:10.1198/016214503000000422 [47] Nason, G.P. (2008)., Wavelet Methods in Statistics with R. New York: Springer. Mathematical Reviews (MathSciNet): MR2445580 Zentralblatt MATH: 1165.62033 [48] Nason, G.P. (2010). wavethresh 4.5. Wavelets statistics and transforms. R package., http://cran.r-project.org [49] Ormerod, J.T. and Wand, M.P. (2010). Explaining variational approximations., The American Statistician, 64, 140–153. Mathematical Reviews (MathSciNet): MR2757005 Zentralblatt MATH: 1200.65007 Digital Object Identifier: doi:10.1198/tast.2010.09058 [50] Osborne, M.R., Presnell, B. and Turlach, B.A. (2000). On the LASSO and its dual., Journal of Computational and Graphical Statistics, 9, 319–337. Mathematical Reviews (MathSciNet): MR1822089 Digital Object Identifier: doi:10.2307/1390657 [51] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems (with discussion)., Statistical Science, 1, 505–527. Mathematical Reviews (MathSciNet): MR874480 Digital Object Identifier: doi:10.1214/ss/1177013525 Project Euclid: euclid.ss/1177013525 [52] Pearl, J. (1988)., Probabilistic Reasoning in Intelligent Systems. San Mateo, California: Morgan Kaufmann. Mathematical Reviews (MathSciNet): MR965765 Zentralblatt MATH: 0746.68089 [53] Pericchi, L.R. and Smith, A.F.M. (1992). Exact and approximate posterior moments for a normal location parameter., Journal of the Royal Statistical Society, Series B, 54, 793–804. Mathematical Reviews (MathSciNet): MR1185223 [54] R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org [55] Robert, C.P. and Casella, G. (2004)., Monte Carlo Statistical Methods, 2nd ed. New York: Springer. Mathematical Reviews (MathSciNet): MR2080278 [56] Ruppert, D., Wand, M.P. and Carroll, R.J. (2003)., Semiparametric Regression. New York: Cambridge University Press. Mathematical Reviews (MathSciNet): MR1998720 [57] Ruppert, D., Wand, M.P. and Carroll, R.J. (2009). Semiparametric regression during 2003-2007., Electronic Journal of Statistics, 3, 1193–1256. Mathematical Reviews (MathSciNet): MR2566186 Digital Object Identifier: doi:10.1214/09-EJS525 Project Euclid: euclid.ejs/1259944245 [58] Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R. and Lunn, D. (2003). BUGS: Bayesian inference using Gibbs sampling. Medical Research Council Biostatistics Unit, Cambridge, UK., http://www.mrc-bsu.cam.ac.uk/bugs. [59] Staudenmayer, J., Lake, E.E. and Wand, M.P. (2009). Robustness for general design mixed models using the, t-distribution. Statistical Modelling, 9, 235–255. Mathematical Reviews (MathSciNet): MR2756419 Digital Object Identifier: doi:10.1177/1471082X0800900304 [60] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution., The Annals of Statistics, 9, 1135–1151. Mathematical Reviews (MathSciNet): MR630098 Zentralblatt MATH: 0476.62035 Digital Object Identifier: doi:10.1214/aos/1176345632 Project Euclid: euclid.aos/1176345632 [61] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso., Journal of the Royal Statistical Society, Series B, 58, 267–288. Mathematical Reviews (MathSciNet): MR1379242 [62] Vidakovic, B. (1999)., Statistical Modeling by Wavelets. New York: Wiley. Mathematical Reviews (MathSciNet): MR1681904 Zentralblatt MATH: 0924.62032 [63] Wahba, G. (1990)., Spline Models for Observational Data, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics. Mathematical Reviews (MathSciNet): MR1045442 Zentralblatt MATH: 0813.62001 [64] Wainwright, M.J. and Jordan, M.I. (2008). Graphical models, exponential families, and variational inference., Foundation and Trends in Machine Learning, 1, 1–305. [65] Wand, M.P. (2009). Semiparametric regression and graphical models., Australian and New Zealand Journal of Statistics, 51, 9–41. Mathematical Reviews (MathSciNet): MR2504101 [66] Wand, M.P. and Ormerod, J.T. (2008). On semiparametric regression with O’Sullivan penalized splines., Australian and New Zealand Journal of Statistics, 50, 179–198. Mathematical Reviews (MathSciNet): MR2431193 [67] Wand, M.P., Ormerod, J.T., Padoan, S.A. and Frühwirth, R. (2011). Mean field variational Bayes for elaborate distributions., Bayesian Analysis, to appear. [68] Wang, Y. (1998). Mixed effects smoothing spline analysis of variance., Journal of the Royal Statistical Society, Series B, 60, 159–174. Mathematical Reviews (MathSciNet): MR1625640 Zentralblatt MATH: 0909.62034 Digital Object Identifier: doi:10.1111/1467-9868.00115 [69] Wang, S.S.J. and Wand, M.P. (2011). Using Infer.NET for statistical analyses., The American Statistician, 65, 115–126. [70] Welham, S.J., Cullis, B.R., Kenward, M.G. and Thompson, R. (2007). A comparison of mixed model splines for curve fitting., Australian and New Zealand Journal of Statistics, 49, 1–23. Mathematical Reviews (MathSciNet): MR2345406 [71] Wood, S.N. (2003). Thin-plate regression splines., Journal of the Royal Statistical Society, Series B, 65, 95–114. Mathematical Reviews (MathSciNet): MR1959095 Zentralblatt MATH: 1063.62059 Digital Object Identifier: doi:10.1111/1467-9868.00374 [72] Wood, S.N. (2006)., Generalized Additive Models: An Introduction with R. Boca Raton, Florida: Chapman & Hall/CRC. Mathematical Reviews (MathSciNet): MR2206355 [73] Wood, S.N. (2011). mgcv 1.7. GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. R package., http://cran.r-project.org Mathematical Reviews (MathSciNet): MR2797734 Digital Object Identifier: doi:10.1111/j.1467-9868.2010.00749.x [74] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty., The Annals of Statistics, 38, 894–942. Mathematical Reviews (MathSciNet): MR2604701 Zentralblatt MATH: 1183.62120 Digital Object Identifier: doi:10.1214/09-AOS729 Project Euclid: euclid.aos/1266586618 [75] Zhang, D., Lin, X., Raz, J. and Sowers, M. (1998). Semi-parametric stochastic mixed models for longitudinal data., Journal of the American Statistical Association, 93, 710–719 Mathematical Reviews (MathSciNet): MR1631369 Zentralblatt MATH: 0918.62039 Digital Object Identifier: doi:10.2307/2670121 [76] Zhao, W. and Wu, R. (2008). Wavelet-based nonparametric functional mapping of longitudinal curves., Journal of the American Statistical Association, 103, 714–725. Mathematical Reviews (MathSciNet): MR2524004 Zentralblatt MATH: 05564525 Digital Object Identifier: doi:10.1198/016214508000000373 [77] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net., Journal of the Royal Statistical Society, Series B, 67, 301–320. Mathematical Reviews (MathSciNet): MR2137327 Zentralblatt MATH: 1069.62054 Digital Object Identifier: doi:10.1111/j.1467-9868.2005.00503.x [78] Zou, H., Hastie, T. and Tibshirani, R. (2007). On the "degrees of freedom” of the lasso., The Annals of Statistics, 5, 2173–2192. Mathematical Reviews (MathSciNet): MR2363967 Digital Object Identifier: doi:10.1214/009053607000000127 Project Euclid: euclid.aos/1194461726
Источник: http://projecteuclid.org/ |